
The SimpleScalar Tool Set, Version 2.0

Doug Burger* Todd M. Austin

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

MicroComputer Research Labs, JF3-359
Intel Corporation, 2111 NE 25th Avenue

Hillsboro, OR 97124 USA

*Contact: dburger@cs.wisc.edu
http://www.cs.wisc.edu/-mscalar/simplescalar.html

This document describes release 2.0 o f the $impleScalar tool
set, a suite o f free, publicly available simulation tools that offer
both detailed and high-performance simulation o f modern micro-
processors. The new release offers more tools and capabilities,
precompiled binaries, cleaner interfaces, better documentation,
easier installation, improved portability, and higher perfor-
mance. This paper contains a complete description o f the tool
set, including retrieval and installation instructions, a descrip-
tion o f how to use the tools, a description o f the target SimpleS-
calar architecture, and many details about the internals o f the
tools and how to customize them. With this guide, the tool set can
be brought up and generating results in under an hour (on sup-
ported plafforms).

1 Overview

Modern processors are incredibly complex marvels of engi-
neering that are becoming increasingly hard to evaluate. This
paper describes the SimpleScalar tool set (release 2.0), which
performs fast, flexible, and accurate simulation of modem pro-
cessors that implement the SimpleScalar architecture (a close
derivative of the MIPS architecture [4]). The tool set takes bina-
ries compiled for the SimpleScalar architecture and simulates
their execution on one of several provided processor simulators.
We provide sets of precompiled binaries (including SPEC95),
plus a modified version of GNU GCC (with associated utilities)
that allows you to compile your own SimpleScalar test binaries
from FORTRAN or C code.

The advantages of the SimpleScalar tools are high flexibility,
portability, extensibility, and performance. We include five e~e-
cution-driven processor simulators in the release. They range
from an extremely fast functional simulator to a detailed, out-of-
order issue, superscalar processor simulator that supports non-
blocking caches and speculative execution.

The tool set is portable, requiring only that the GNU tools
may be installed on the host system. The tool set has been tested
extensively on many platforms (listed in Section 2). The tool set
is easily extensible. We designed the instruction set to support

This work was initially supported by NSF Grants CCR-9303030, CCR-
9509589, and MIP-9505853, ONR Grant N00014-93-I-0465. a donation
from Intei Corp., and by U.S. Army Intelligence Center and Fort Hua-
chuca under Contract DABT63-95-C-0127 and ARPA order nn. D346.
The current support for this work comes from a variety of sources, all of
to which we are indebted.

easy annotation of instructions, without requiring a retargeted
compiler for incremental changes. The instruction definition
method, along with the ported GNU tools, makes new simulators
easy to write, and the old ones even simpler to extend. Finally,
the simulators have been aggressively toned for performance,
and can run codes approaching "'real" sizes in tractable amounts
of time. On a 200-MHz Pentium Pro, the fastest, least detailed
simulator simulates about four million machine cycles per sec-
ond, whereas the most detailed processor simulator simulates
about 150,000 per second.

The current release (version 2.0) of the tools is a major
improvement over the previous release. Compared to version 1.0,
this release includes better documentation, enhanced perfor-
mane.e, compatibility with more platforms, precompiled SPEC95
SimpleScaiar binaries, cleaner interfaces, two new processor
simulators, option and statistic management packages, a source-
level debugger (DLite!) and a tool to trace the out-of-order pipe-
line.

The rest of this document contains information about obtain-
ing, installing, running, using, and modifying the tool set. In
Section 2 we provide a detailed procedure for downloading the
release, installing it, and getting it up and running. In Section 3,
we describe the SimpleScalar architecture and details about the
target (simulated) system. In Section 4, we describe the SimpleS-
calar processor simulators and discuss their internal workings. In
Section 5, we describe two tools that enhance the utility of the
tool set: a pipeline tracer and a source-level debugger (for step-
ping through the program being simulated). In Section 6, we pro-
vide the history of the tools' development, describe current and
planned efforts to extend the tool set, and conclude.

2 Installation and Use

The only restrictions on using and distributing the tool set are
that (1) the copyright notice must accompany all re-releases of
the tool set, and (2) third parties (i.e., you) are forbidden to place
any additional distribution restrictions on extensions to the tool
set that you release. The copyright notice can be found in the dis-
tribution directory as well as at the head of all simulator source
files. We have included the copyright here as well:

Copyright (C) 1994, 1995, 1996, 1997 by Todd M. Austin
This tool set is distributed "as is" in the hope that it will be

useful. The tool set comes with no warranty, and no author or

m l 3 m

distributor accepts any responsibility f o r the consequences o f its
~ s e .

Everyone is granted permission to copy, modify and redistrib-
ute this tool set under the fol lowing conditions:

• T~'s tool set is distributed f o r non-commercial use only.
Pleuse contact the maintainer f o r restrictions applying to
commercial use o f these tools.

• Permission is granted to anyone to make or distribute cop-
ies o f this tool set, either as received or modified, in any
medium, provided that all copyright notices, permission and
nonwarranty notices are preserved, and that the distributor
grants the recipient permission f o r fur ther redistribution as
permit ted by this document.

• Permission is granted to distribute these tools in compiled
or executable fo rm under the same conditior~v that apply f o r
source code, provided that either: (1) it is accompanied by
the corresponding machine-readable source code, or (2) it
i$ accompanied by a written offer, with no time limit, to give
anyone a machine-readable copy o f the corresponding
source code in return f o r reimbursement o f the cost o f distri-
bution. This written offer must permit verbatim duplication
by anyone, or O) it is distributed by someone who received
only the executable form, and is accompanied by a copy o f
the written offer o f source code that they received concur-
rently.

In other words, you are welcome to use, share and improve
these tools. You are forbidden to forbid anyone else to use, share
and improve what you give them.

2.1 Obtaining the tools
The tools can either be obtained through the World Wide

Web, or by conventional ftp. For example, to get the file q i m -
p l e s i m , t a r . gz via the WWW, enter the URL:

f t p : I / f t p . c s . w £ s c . e d u / s o h i / c o d e / s 4 ~ l e e e a l a r l

sim~lesim, tar

and to obtain the same file with traditional ftp:

ftp ftI~ - os .wise. edu

u m e E : LIIOI¢I~qilOUB

p a s s w o r d : e n t e r y o u r e - m a L l a d d r e s s h e r e
o d s e h £ / C o d e / s ~ l e s c a l a r

get simplesim, tar

Note the "tar.gz" suffix: by requesting the file without the ".gz"
suffix, the ftp server uncompresses it automatically. To get the
compressed version, simply request the file with the ".gz" suffix.

The five distribution files in the directory (which are symboIic
links to the files containing the latest version of the tools) are:

• simplesim.tar .gz - contains the simulator sources, the
instruction set definition macros, and test program source
and binaries. The directory is 1 MB compressed and 4 MB
uncompressed. When the simulators are built, the directory
(including object files) will require 11 MB. This file is
required for installation of the tool set.

• s impleuli ls . tar .gz - contains the GNU binutils source (ver-
sion 2.5.2), retargeted to the SimpleScalar architecture.
These utilities are not required to run the simulators them-
selves, but is required to compile your own SimpleScalar

benchmark binaries (e.g. test programs other than the ones
we provide). The compressed file is 3 MB, the uncom-
pressed file is 14 MB, and the build requires 52 MB.

• s imple too ls . t a r .p - contains the retargeted GNU compiler
and library sources needed to build SimpleScalar bench-
mark binaries (GCC 2.6.3, glibc 1.0.9, and f2c), as well as
pre-built big- and little-endian versions of libc. This file is
needed only to build benchmarks, not to compile or mn the
simulators. The tools are 11 MB compressed, 47 MB
uncompressed, and the full installation requires 70 MB.

• s implebeneh.big. tar .gz - contains a set of the SPEC95
benchmark binaries, compiled to the SimpleScalar architec-
ture running on a big-endian host. The binaries take under 5
MB compressed, and are 29 MB when uncompressed.

• simplebench.l i t t le . tar .gz - same as above, except that the
binaries were compiled to the SimpleScalar architecture
running on a little-endian host.

Once you have selected the appropriate files, place the down-
loaded files into the desired target directory. If you obtained the
files with the ".gz" suffix, run the GNU decompress utility (gun-
zip). The files should now have a ".tar" suffix. To remove the
directories from the archive:

t a r x f f J . l a n s m e . t a ~

If you download and unpack all files, release, you should have
the following subdirectories with following contents:

• simplesim-2.0 - the sources of the SimpleScalar processor
simulators, supporting scripts, and small test benchmarks. It
also holds precompiled binaries of the test benchmarks.

• binufils-2.5.2 - the GNU binary utilities code, ported to the
SimpleScalar architecture.

• ssbig .na .ss t r ix - the mot directory for the tree in which the
big-endian SimpleScalar binary utilities and compiler tools
will be installed. The unpacked directories contain header
files and a pre-compiled copy of libc and a necessary object
file.

• ssli t t le-na-sstrix - same as above, except that this directory
holds the little-endian versions of the SimpleScalar utilities.

• gcc-2.6.3 - the GNU C compiler code, targeted toward the
SimpleScalar architecture.

• gl ibc-l .09 - the GNU libraries code, ported to the SimpleS-
calar architecture.

• ['2c-1994.09.27 - the 1994 release of AT&T Bell Labs'
FORTRAN to C translator code.

• spec95-big - precompiled SimpleScalar SPEC95 bench-
mark binaries (big-endian version).

• spee95-little - precompiled SimpleScalar SPEC95 bench-
mark binaries (little-endian version)

2.2 Installing and running Simplescalar
We depict a graphical overview of the tool set in Figure 1.

Benchmarks written in FORTRAN are convened to C using Bell
Labs' f2c converter. Both benchmarks written in C and those
converted from FORTRAN are compiled using the SimpleScalar
version of GCC, which generates SimpleScalar assembly. The
SimpleScalar assembler and loader, along with the necessary

- - 1 4 - -

F O R T R A N C
b e n c h m a r k s o u r c e b e n c h m a r k sou rce

S i m u l a t o r s o u r c e
(e.g., sim-outorder.c)

Gtc°+
~ S i m p l e S c a l a r

a s s e m b l y

("Simple$calar-'~
GAS • ~ R E S U L T S

~"7,-"2~2"~Jt~ " ~ S i m p l e S c a l a r P r e c o m p i l e d SS
~ - " - " - - execu tab les b i n a r i e s (test, S P E C 9 S)

Figure 1. SimpleScalar tool set overview

pored libraries, produce SimpleScalar executables that can then
be fed directly into one of the provided simulators. (The simula-
tors themselves are compiled with the host platform's native
compiler; any ANSI C compiler will do).

If you use the precompiled SPEC95 binaries or the precom-
piled test programs, all you have to install is the simulator source
itself. If you wish to compile your own benchmarks, you will
have to install and build the GCC tree and optionally (recom-
mended) the GNU binutils. If you wish to modify the support
libraries, you will have to install, modify, and build the glibc
source as well.

The SimpleScalar architecture, like the MIPS architecture [4],
supports both big-endian and little-endian executables. The tool
set supports compilation for either of these targets; the names for
the big-endian and little-endian architecture are ssbig-na-sstrix
and ssfitfle-na-sstrix, respectively. You should use the target
endian-ness that matches your host platform; the simulators may
not work correctly if you force the compiler to provide cross-
endian support. To determine which endian your host uses, run
the endian program located in the s i m p l e s i m - 2 . 0 / direc-
tory. For simplicity, the following instructions will assume a big-
endian installation. In the following instructions, we will refer to
the directory in which you are installing SimpleScalar as
$ IDIR/.

The simulators come equipped with their own loader, and
thus you do not need to build the GNU binary utilities to run sim-
ulations. However, many of these utilities are useful, and we rec-
ommend that you install them. If desired, build the GNU binary
utilities !:

= d $ZDIR/b£nut£11-2.5.2

configure --hoitm$HOST --target-sa]~g-na-

sstrix --with-~nu-as --wlth-~u-ld --pza-
fixm$IDIl%

make

i. You must have GNU Make to do the majority of installations described
in this document. To check if you have the GNU version, execute "make -
v" or "gmake -v". The GNU version understands this switch and displays
version information.

make Install

$HOST here is a "canonical configuration" string that represents
your host architecture and system (CPU-COMPANY-SYSTEM).
The string for a Sparostation running SunOS would be sparc-sun-
sunos4.1.3, running Solaris: sparc-sun-solafis2, a 386 running
Solaris: i386-sun-solaris2.4, etc. A complete list of supported
$HOST strings resides in $ I D I R / g c c - 2 . 6 . 3 / INSTALL.

This installation will create the needed directories in $ I D I R
(these include b i n / , l i b / , i n c l u d e / , and man /) . Once the
binutils have been built, build the simulators themselves. This is
necessary to do before building GCC, since one of the binaries is
needed for the cross-compiler build. You should edit $ I D I R /
s imp 1 e s i ra - 2 . 0 / M a k e f i 1 e to use the desired compile flags
(e.g., the correct optimization level). To use the GNU BFD
loader instead of the custom loader in the simulators, uncomment
-DBFD_LOADER in the Makefile. To build the simulators:

od $IDZRlui~pleuim-2.0
make

If desired, build the compiler:

,..,d $ ' r D T I % I @ G C - 2 . 6 . 3
eonfi~re --hostffiSK08T --taEgetfasbi~-na-

sutEix --wlth-gnu-as --wlth-gnu-ld --pra-
fIx:$IDIR

make LANGUAGES-c

. . luimplasim-2.01ulm-safe ./enquire -f > I
float .h-areas

make install

We provide pro-built copies of the necessary libranes J n s s b i g-

na-sstrix/lib/, so you do not need to build the code in
glibc-l.09, unless you change the library code. Building these
libraries is tricky, and we do not recommend it unless you have a
specific need to do so. In that event, to build the libraries:

c d $IDIRlglibc-l. 0 9
configure --prefix= $/DIR/ooblg-na-satrix

osbig-na-eotrlx

oetenv CC $1DIKlb~n/subio-na-outEix-g==
unuetenv TZ

unsetenv MACHINE

15

make
make install

Note that you must have already built the SimpleScalar simula-
tors to build this library, since the glibo build requires a compiled
simulator to test target machine-specific parameters such as
endian-ness.

If you have FORTRAN benchmarks, you will need to build
f'2c:

e d $ I D Z ~ l f 2 c - 1 9 9 4 . 0 9 . 2 7
make
make install

The entire tool set should now be ready for use. We provide pre-
compiled test binaries (big- and little-endian) and their sources in
$IDIR/simplesim2.0/Uests). To run a test:

c~ $ZDX~/ai~leaim-3.0
81m-safe tests/bin.big/test-math

The test should generate about a page of output, and will run very
quickly. The release has been ported to---and should run on - - the
following systems:

- gcc/AIX 413/RS6000
- xlc/AIX 413/RS6000
- gcc/HPUX/PA-RISC
- gcc/SunOS 4.1.3/SPARC
- gcc/Linux 1.3/x86
- gcc/Solaris 2/SPARC
- gec/Solaris 2/x86
- gee/DEC Unix 3.2/Alpha
- c89/DEC Unix 3.2/Alpha
- gce/FrceBSD 2.2/x86
- gec/WindowsNT/x86

3 The Simplescalar architecture

The SimpleScalar architecture is derived from the MIPS-IV
ISA [4.]. The tool suite defines both iittle-endian and big-endian
versions of the architecture to improve portability (the version
used on a given host machine is the one that matches the endian-
ness of the host). The semantics of the SimpleScalar ISA arc a
superset of MIPS with the following notable differences and
additions:

• There are no arehitected delay slots: loads, stores, and con-
trol transfers do not execute the succeeding instruction.

• Loads and stores support two addressing modes---for all
data types----in addition to those found in the MIPS architec-
ture. These are: indexed (register+register), and auto-incre-
ment/decrement.

• A square-root instruction, which implements both single-
and double-precision floating point square roots.

• An extended 64-bit instruction encoding.

We list all SimpleScalar instructions in Figure 2. A complete
list of the instruction semantics (as implemented in the simula-
tor) can be found elsewhere [2]. In Table 1, we list the archi-
tected registers in the SimpleScalar architecture, their hardware
and software names (which are recognized by the assembler),
and a description of each. Both the number and the semantics of
the registers are identical to those in the MIPS-IV ISA.

In Figure 3, we depict the three instruction encodings of Sim-
pleScalar instructions: register, immediate, and jump formats. All
instructions an: 64 bits in length.

The register format is used for computational instructions.
The immediate format supports the inclusion of a 16-bit constant.
The jump format supports specification of 24-bit jump targets.
The register fields are all 8 bits, to support extension of the archi-
tected registers to 256 integer and floating point registers. Each
instruction format has a fixed-location, 16-bit opcode field that
facilitates fast instruction decoding.

The annote field is a 16-bit field that can be modified post-
compile, with annotations to instructions in the assembly files.
The annotation interface is useful for synthesizing new instruc-
tions without having to change and re.compile the assembler.
Annotations are attached to the opcode, and come in two flavors:
bit and field annotations. A bit annotation is written as follows:

lw/a $=6,4 ($r7)

The annotation in this example is /a . It specifies that the first bit
of the annotation field should be set. Bit annotat ions/a through/p
set bits 0 through 15, respectively. Field annotations are written
in the form:

lw16:4(7) $r6,4 ($r7)

This annotation sets the specified 3-bit field (from bit 4 to bit 6
within the 16-bit annotation field) to the value 7.

System calls in SimpleSealar are managed by a proxy handler
(located in s y s c a l l , c) that intercepts system calls made by
the simulated binary, decodes the system call, copies the system
call arguments, makes the corresponding call to the host's operat-
ing system, and then copies the results of the call into the simu-
lated program's memory. If you are porting SimpleScalar to a
new platform, you will have to code the system call translation
from SimpleScalar to your host machine in s y s c a l l , c. A list
of all SimpleScalar system calls is available elsewhere [2].

SimpleScalar uses a 31-bit address space, and its virtual
memory is laid out as follows:

O x O 0 0 0 0 0 0 0 Unused
O x O 0 4 , 0 0 0 0 O Start o f t e x t s e g m e n t
O x l O 0 0 0 0 0 0 S t a r t o f d a t a s e g m e n t
O x T f f f e O 0 0 S t a c k base (g r o w s down)

The top of the data segment (which includes init and bss) is held
in mem_brk__point. The areas below the text segment and
above the stack base are unused.

4 Simulator internals

In this section, we describe the functionality of the processor
simulators that accompany the tool set. We describe each of the
simulators, their functionality, command-line arguments, and
internal structures.

The compiler outputs binaries that arc compatible with the
MIPS ECOFF object format. Library calls are handled with t h e

ported version of GNU GLIBC and POSIX-compliant Unix sys-
tem calls. The simulators currently execute only user-level code.
All SimpleScalar-related extensions to GCC are contained in the
c o n f i g / s s subdirectory of the GCC source tree that comes
with the distribution.

The architecture is defined in s s . d a f , which contains a

16

Control
j - j u m p
ja l - j u m p and l ink
j r - j u m p r eg i s t e r
j a l r - j u m p and l ink r eg i s t e r
beq - b r a n c h ~ 0
b n e - b r a n c h [= 0
b l ez - b r a n c h < = 0
bg t z - b r a n c h > 0
bl tz - b r a n c h < 0
b g e z - b r a n c h > = 0
be t - branch F C C T R U E
b c f - b r a n c h F C C F A L S E

Load/Store
lb - l oad b y t e
lbu - l oad b y t e u n s i g n e d
lh - l oad h a l f (shor t)
l hu - l oad h a l f (shor t) u n s i g n e d
lw - load w o r d
d l w - load d o u b l e w o r d
l .s - load s i n g l e - p r e c i s i o n F P
l .d - l oad d o u b l e - p r e c i s i o n F P
sb - s to re b y t e
sbu - s to re b y t e u n s i g n e d
s h - s t o r e h a l f (shor t)
s h u - s to re h a l f (shor t) u n s i g n e d
s w - s tore w o r d
d s w - s t o r e d o u b l e w o r d
s .s - s t e r e s i n g l e - p r e c i s i o n F P
s .d - s to re d o u b l e - p r e c i s i o n F P

a d d r e s s i n g m o d e s :
(c)
(r e g + C) (wi th p r e / p o s t i n c / d e c)
(r eg+reg) (w i t h preJpos t i nc /dec)

Integer Arithmetic
add - i n t e g e r add
addu - i n t ege r add u n s i g n e d
s u b - i n t ege r s u b t r a c t
subu - i n t ege r s u b t r a c t u n s i g n e d
m u l t - i n t e g e r m u l t i p l y
m u l t u - i n t ege r m u l t i p l y u n s i g n e d
d ie - i n t ege r d iv ide
d ivu - i n t e g e r d iv ide u n s i g n e d
and - log ica l A N D
o r - log ica l O R
x o r - log ica l X O R
n o r - log ica l N O R
sll - sh i f t lef t l og ica l
srl - sh i f t r igh t l og i ca l
sra - sh i f t r i gh t a r i t h m e t i c
si t - s e t l ess t han
s l tu - se t l ess t han u n s i g n e d

Figure 2. Summary of SimpleScalar instructions

Floating Point Arithmetic
add . s - s i n g l e - p r e c i s i o n (SP) add
add .d - d o u b l e - p r e c i s i o n (D P) add
sub . s - S P s u b t r a c t
s u b . d - D P s u b t r a c t
m u l t . s - SP m u l t i p l y
m u l t . d - D P m u l t i p l y
div.s - SP d i v i d e
d iv .d - D P d i v i d e
abs . s - SP a b s o l u t e v a l u e
a b s . d - D P a b s o l u t e v a l u e
n e g . s - S P n e g a t i o n
n e g . d - D P n e g a t i o n
sqr t . s - SP s q u a r e roo t
sqr t .d - D P s q u a r e roo t
c v t - int . , s i n g l e , d o u b l e c o n v e r s i o n
c . s - SP c o m p a r e
c .d - D P c o m p a r e

Miscellaneous
n o p - no o p e r a t i o n
s y s c a l l - s y s t e m cal l
break - declare p r o g r a m error

Hardware Name Software Name Description
$u $zero
$1
$2 -$3
$4-$7
$8-$15
$16-$23
$25-$25
$26-$27
$28
$29
$30
¢k31

"$hi
$1o
$I0-$131
Srcc

Sat
SvO-$v1
SaO-$a3
$t0-$17
SsO-$s7
$18-$t9
$kO-$kl
Sgp

Sra
Shi

Sfcc

$1o
SfO-$f31

8-rs

zero-valueo sourcelSlnK
reserved by assembler
In return result regs
fn argument value regs
temp regs, caller saved
saved regs, callee saved
temp regs, caller saved
reserved by O S

global pointer
stack pointer
saved regs. callee saved
return address reg
high result register
low result register
floating point registers
floating point condition code

Table 1: SimpleScalar architecture register definitions

1 6 - a n n o t e 1 6 - o p c o d e

R e g i s t e r f o r m a t : I [
63

8.n 8 - rd 8 - n d s h a m t

I m m e d i a t e f o r m a t : [

1 6 - a n n o t e 1 6 - o p c o d e

I
63 32 31

1 6 - i m m

J u m p f o r m a t :

1 6 - a n n o t e 1 6 - o p c o d e 6 - u n u s e d

I I I I
24- t a rge t

I
63 32 31 0

Figure 3. SimpleScalar architecture instruction formats

- -17 - -

macro definition for each instruction in the instruction set. Each
macro defines the opcode, name, flags, operand sources and des-
tinations, and actions to be taken for a particular instruction.

The instruction actions (which appear as macros) that are
common to all simulators are defined in -~s. h. Those actions
that require different implementations in different simulators are
defined in each simulator code file.

When running a simulator, m a i n () (defined in m a i n . c)
does all the initialization and loads the target binary into mem-
ory. The routine then calls . ~ i m _ m a i n (), which is simulator-
specific, defined in each simulator code file. s ± m _ n ~ i n () pre-
decodes the entire text segment for faster simulation, and then
begins simulation from the target program entry point.

The foliowing command-line arguments are available in all
simulators included with the release."

-h prints the simulator help message.

-d turn on the debug message.
-i start execution in the DLite! debugger (see

Section 5.2). This option is not supported in
the siro-fast simulator.

-q terminate immediately (for use with -dump-
config).

-dumpconfig <file>

generate a configuration file saving the com-
mand-line parameters. Comments are per-
mitted in the conflg files, and begin with a #.

-config <file> read in and use a configuration file. These
files may reference other config files.

4.1 Func t iona l s imula t ion

The fastest, least detailed simulator (sire-fast) resides in
s i m - £ a = t : , c. aim-fast does no time accounting, only func-
tional simulation it executes each instruction serially, simulat-
ing no instructions in parallel, sire-fast is optimized for raw
speed, and assumes no cache, instruction checking, and has no
support for DLite!_

A separate version of aim-fast, called aim-safe, also performs
functional simulation, but checks for correct alignment and
access permissions for each memory reference. Although similar,
sire-fast and sire-safe are split (i.e., protection is not toggled
with a command-line argument in a merged simulator) to maxi-
mize performance. Neither of the simulators accept any addi-
tional command-line arguments. Both versions are very simple:
less than 300 lines of cede---they therefore make good starting
points for understanding the internal workings of the simulators.
In addition to the simulator file, both sim-fast and sire-safe use
the following code files (not including header files): m a l n . c,
=yscall.c, memory.c, regs_c, loader.c, ~s.c,

endian, c, and misc. c. ~im-safe als0 uses dl ite. c.

4.2 Cache s imula t ion

The SimpleScalar distribution comes with two functional
cache simulators; siro-cache and sim-eJaeetah. Both use the file
cache.c, and they use sim-cache.c and sim-chee-

t a h . c, respectively. These simulators are ideal for fast simula-
tion of caches if the effect of cache performance on execution
time is not needed.

sire-cache accepts the following arguments, in addition to the

universal arguments described in Section 4:

-cache:dll <config>
-cache:dl2 <config>
-cache:ill <config:>
-cache:il2 <config>

-tlb:dtlb <config>
-tlb:itlb <config>

-flush <boolean>

configures a level-one data cache.

configures a level-two data cache.
configures a level-one instr, cache.
configures a level-two instr, cache.
configures the data TLB.

configures the instruction "['LB.

flush all caches on a system call;

(<boolean> = 01 1 I tree I TRUE I false I FALSE).
-icompress remap SimpleScalar's 64--bit

instructions to a 32-bit equivalent in
the simulation (i.e., model a
machine with 4-word instructions).

-pester <star> generate a text-based profile, as
described in Section 4.3.

The cache configuration (<config>) is formatted as follows:

, (n a . l ~ 8 :~ - 4:lo, e l l " e :~ : . (l h e ~ . ' ~ a ~ = , (a m = o , " ~ : c ~ a] ~ " l :~

Each of these fields has the following meaning:

<name> cache name, must be unique.

<nsetz> number of sets in the cache.
<baize> block size (for TLBs, use the page size).

<assoc> associativity of the cache (power of two).
<repl> replacement policy (1 1 f I r), where

l = L R U , f = FIFO, r = random replacement.
The cache size is therefore the product of <nsets>, <baize>, and
<assoc>. To have a unified level in the hierarchy, "point" the
instruction cache to the name of the data cache in the correspond-
ing level, as in the following example:

- c a c h e : £ 1 1 £ 1 1 : 1 2 8 : 64, : 1 : ' 1

- c a c h e : J . 1 2 d 1 2

-cache : dll dlI:256:32:1:i

-oeohe : d12 u12:1024:64:2:1

The defaults used in sire-cache are as follows:

L1 instruction cache: ii 1:256:32:1:1 (8 KB)
L1 data cache: dl1:256:32:1:1 (8 KB)
L2 unified cache: u12:1024:64:4:! (256 KB)

instruction TLB: itlb: 16:4096:4:1 (64 entries)
data TLB: dtlb:32:4096:4:l (128 entries)

sire-cheetah is based on work performed by Ragin Sugumar and
Santosh Abraham while they were at the University of Michigan.
It uses their Cheetah cache simulation engine [6] to generate sim-
ulation results for multiple cache configurations with a single
simulation. The Cheetah engine simulates fully associative
caches efficiently, as well as simulating a sometimes-optimal
replacement policy. This policy was called MIN by Belady [I],
although the simulator refers to it as opt. Opt uses future knowl-
edge to select a replacement; it chooses the block that will be ref-
erenced the furthest in the future (if at all). This policy is optimal
for read-only instruction streams. It is not optimal for write-back
caches because it may be more expensive to replace a block ref-
erenced further in the future if the block must be written back, as
opposed to a clean block referenced slightly less far in the future.
Horwitz et el. [3] formally described an optimal algorithm that
includes writes; however, only MIN is implemented in the simu-

- - 1 8 - -

-refs [inst I data

-C [fa I sa I dm]

lator.
We have included the Cheetah engine as a stand-alone library,

which is built and resides in the l i b c h e e t a h / directory, sire-
cheetah accepts the following command-line arguments, in addi-
tion to those listed at the beginning of Section 4:

I unified]

specify which reference stream to analyze.

fully associative, set associative, or direct-
mapped cache.

-R [Iru I opt] replacement policy.
-a <sets> log base 2 minimum bound on number of

sets to simulate simultaneously.
-b <sets> log base 2 maximum bound on set number.
-l <line> cache line size (in bytes).
-n <assoc> maximum associativity to analyze (in log

base 2).
-in <interval> cache size interval to report when simulating

fully associative caches.
-M <size> maximum cache size of interest.
-C <size> cache size for direct-mapped analyses.

Both of these simulators are ideal for performing high-level
cache studies that do not take access time of the caches into
account (e.g., studies that are concerned only with miss rates). To
measure the effect of cache organization upon the execution time
of real programs, however, the timing simulator described in
Section 4.4 must be used.

4.3 Profiling
The d is~but ion comes with a functional simulator that pro-

duces voluminous and varied profile information, sim-profile
can generate detailed profiles on instruction classes and
addresses, text symbols, memory accesses, branches, and data
segment symbols.

sim-profile takes the following command-line arguments,
which toggle the various profiling features:

-iclass instruction class profiling (e.g. ALU,
branch).

-iprof instruction profiling (e.g., bnez, addi).
-brprof branch class profiling (e.g., direct, calls, con-

ditional).
-amprof addr. mode profiling (e.g., displaced, R+R).
-segprof load/store segment profiling (e.g., data,

heap).
-tsymprof execution profile by text symbol (functions).
-dsymprof reference profile by data segment symbol.
-taddrprof execution profile by text address.
-ail turn on all profiling listed above.

Three of the simulators (aim-profile, sire-cache, and sire-out-
o rder) support text segment profiles for statistical integer
counters. The supported counters include any added by users, so
long as they are correctly "registered" with the SimpleScalar
stats package included with the simulator code (see Section 4.5).
To use the counter profiles, simply add the command-line flag:

-pcstat <star>
where <stat> is the integer counter that you

wish to profile by text address.
To generate the statistics for the profile, follow the following
example:

sim-profile -pcstat ~im_num_insn test-math >&!

tes t-math, out

objdump -dl test-math >! test-math.dis

textprof.pl test-math.dis test-math.out

s im_num_insn_by_ oc

We show a segment of the text profile output in Figure 4. Make
sure that "objdump" is the version created when compiling the
binutils. Also, the first line of t e x t p r o f . p l must be changed
to reflect your system's path to Perl (which must be installed on
your system for you to use this script). As an aside, note that "-
taddrprof ' is equivalent to "'-l~stat sim_num_insn".

4.4 Out-of-order processor timing simulation
The most complicated and detailed simulator in the distribu-

tion, by far, is s im-ou torder (the main code file for which is
s i m - o u t o r d e r , c - - a b o u t 3500 lines long). This simulator
supports out-of-order issue and execution, based on the Register
Update Unit [5]. The RUU scheme uses a reorder buffer to auto-
matically rename registers and hold the results of pending
instructions. Each cycle the reorder buffer retires completed
instructions in program order to the architected register file.

The processor's memory system employs a load/store queue.
Store values are placed in the queue if the store is speculative.
Loads are dispatched to the memory system when the addresses
of all previous stores are known. Loads may be satisfied either by
the memory system or by an earlier store value residing in the
queue, if their addresses match. Speculative loads may generate
cache misses, but speculative TLB misses stall the pipeline until
the branch condition is known.

We depict the simulated pipeline of s im-ou to rde r in
Figure5. The main loop of the simulator, located in
s i r e _ m a i n () , is structured as follows:

r u u _ i n : t t () t
f o = (I s) {

z-uu._c ,-mm~4 t: () I
ruu ._wr l t e b a c k () ;
l a q _ r e f r e a h () i
ruu_:TLasue () ;
r u n _ d i s p a t c h () ;
r u u _ f e t e h () ;

}

This loop is executed once for each target (simulated)
machine cycle. By walking the pipeline in reverse, inter-stage
latch synchronization can be handled correctly with only one
pass through each stage. W h e n the target p rog ram terminates
w i t h an e x i t () system cal l , the s imu la to r per forms a
l o n g j m p () to m a i n () to generate the statistics.

The fetch stage of the pipeline is implemented in
r u u _ f e t c h () . The fetch unit models the machine instruction
bandwidth, and takes the following inputs: the program counter,
the predictor state, and misprediction detection from the branch
execution unit(s). Each cycle, it fetches instructions from only
one 1-cache line (and it blocks on an l-cache miss until the miss
completes). After fetching the instructions, it places them in the
dispatch queue, and probes the line predictor to obtain the correct

1 9

e x e c u t e d - " - ' l P e t O04DlalO: (13, 0.01):
1 3 t i m e s ~ - strtod.c:79

O0401alE: (13, 0.01) :
strtod.c:87

never - - . . . ~ X 00401a20 :
elecUteCl~4 v E 00401a28:

strtod.c:89
00401a30: (13, 0.01] :

00401a38: (13, 0.01):
00401a40: (13, 0.01):

<strtod+220> addiu Sal[5],$zero[O],l

<strLod+228> bclf 00401a30 <strtod+240>

<strtod+230> addiu Ssl[17],$sl[17],l
<strtod+238> j 00401a58 <strtod+268>

<strtod+240> mul_d Sf2,$f20,Sf4
<strtod+248> addiu Sv012],$vl[3],-4B
<strtod+250> mtcl Sv0[2],~f0

Figure 4. Sample output from text segment statistical profile

1[
Figure 5. Pipeline for sim-outorder

[:
i i i

cache line to access in the next cycle.
The code for the dispatch stage of the pipeline resides in

r u u _ d i s p a t = c h () . This routine is where instruction decoding
and register renaming is performed. The function uses the
instructions in the input queue filled by the fetch stage, a pointer
to the active RUU, and the rename table. Once per cycle, the dis-
patcher takes as many instructions as possible (up to the dispatch
width of the target machine) from the fetch queue and places
them in the scheduler queue. This routine is the one in which
branch mispredictions are noted. (When a misprediction occurs,
the simulator uses speculative state buffers, which are managed
with a copy-on-write policy). The dispatch routine enters and
links instructions into the RUU and the load/store queue (LSQ),
as well as splitting memory operations into t w o separate instruc-
tions (the addition to compute the effective address and the mem-
ory operation itself).

The issue stage of the pipeline is contained in
ruu_issue () and Isq_refresh (). These routines model

instruction wakeup and issue to the functional units, txacking reg-
ister and memory dependences. Each cycle, the scheduling rou-
tines locate the instructions for which the register inputs are all
ready. The issue of ready loads is stalled if there is an earlier
store with an unresolved effective address in the load/store
queue. If the address of the earlier store matches that of the wait-
ing load, the store value is forwarded to the load. Otherwise, the
load is sent to the memory system.

The execute stage is also handled in r u u _ i s s u e (). Each

cycle, the routine gets as many ready instructions as possible
from the scheduler queue (up to the issue width). The functional
units' availability is also checked, and if they have available
access ports, the instructions are issued. Finally, the routine
schedules writeback events using the latency of the functional
units (memory operations probe the data cache to obtain the cor-
rect latency of the operation). Data TLB misses stall the issue of
the memory operation, are serviced in the commit stage of the
pipeline, and currently assume a fixed latency. The functional
units ' latencies are hardcoded in the definition of
fu_config [] in sim-outorder, c.

The writeback stage resides in r u u w r i t = e b a c k (). Each
cycle it scans the event queue for instruction completions. When
it finds a completed instruction, it walks the dependence chain of
instruction outputs to mark instructions that are dependent on the
completed instruction. If a dependent instruction is waiting only
for that completion, the routine marks it as ready to be issued.
The writeback stage also detects branch mispredictions; when it
determines that a branch misprediction has occurred, it rolls the
state back to the checkpoint, discarding the erroneously issued
instructions.

r u u _ c o m m i t () handles the instructions from the writeback
stage that are ready to commit. This routine does in-order com-
mitting of instructions, updating of the data caches (or memory)
with s to re values, and data TLB miss handling. The routine keeps
retiring instructions at the head of the RUU that are ready to
commit until the head instruction is one that is not ready. When

- - 2 0 - -

an instruction is committed, its result is placed into the archi-
tected register file, and the RUU/LSQ resources devoted to that
instruction are reclaimed.

s im-outorder runs about an ordar of magnitude slower than
sire-fast. In addition to the arguments listed at the beginning of
Section 4, s im-outorder uses the following command-line argu-
ments:

Specifying the processor core

-fetch:ifqsize <size>
set the fetch width to be <size> instructions.
Must be a power of two. The default is 4.

-fetch:speed <ratio>
set the ratio of the front end speed relative to
the execution core (allowing <ratio> times as
many instructions to be fetched as decoded
per cycle).

-fetch:mplat <cycles>
set the branch misprediction latency. The
default is 3 cycles.

-decode:width <insts>

set the decode width to be <insts>, which
must be a power of two. The default is 4.

-issue:width <insts>

set the maximum issue width in a given
cycle. Must be a power of two. The default is
4.

-issue:inorder force the simulator to use in-order issue. The
default is false.

-issue:wrongpath

allow instructions to issue after a misspecula-
tion. The default is true.

-ruu:size <insts>
capacity of the RUU (in instructions). The
default is 16.

-lsq:size <insts>
capacity of the load/store queue (in instruc-
tions). The default is 8.

-res:ialu <num>

specify number of integer ALUs. The default
i s4 .

-res:imult <num>

specify number of integer multipliers/divid-
ers. The default is 1.

-res:memports <num>

specify number of L1 cache ports. The
default is 2.

-res:fpalu <num>

specify number of floating point ALUs. The
default is 4.

-res: fpmult <num>

specify number of floating point muitipliers/
dividers. The default is 1.

Specifying the memory hierarchy

All of the cache arguments and formats used in sire-cache
(listed at the beginning of Section 4.2) are also used in sim-out-
order, with the following additions;

-cache:rill lat <cycles>

Specify the
The default

-cache:d121at <cycles>

Specify the
The default

-cache:il 1 lat <cycles>
specify the
cache. The

-cacbe:il21at <cycles>

specify the
cache. The

-mem:lat <lst> <next>

hit latency of the L1 data cache.
is 1 cycle.

hit latency of the L2 data cache.
is 6 cycles.

hit latency of the L1 instruction
default is 1 cycle.

hit latency of the L2 instruction
default is 6 cycles.

specify main memory access latency (first,
re.s0. The defaults are 18 cycles and 2 cycles.

-mem:width <bytes>

specify width of memory bus in bytes. The
default is 8 bytes.

-tlb:lat <cycles>
specify latency (in cycles) to service a TLB
miss. The default is 30 cycles.

Specifying the b ranch predictor

Branch prediction is specified by choosing the following flag
with one of the six subsequent arguments. The default is a bimo-
dal predictor with 2048 entries.

-bpred <type>

nottaken
taken
perfect
bimod

always predict not taken.

always predict taken.

perfect predictor.
bimodal predictor, using a branch target
buffer (BTB) with 2-bit counters.

21ev 2-level adaptive predictor.
comb combined predictor (bimodal and 2-level

adaptive).

The predictor-specific arguments are listed below:

-bpred:bimod <size>
set the bimodal predictor table size to be
<size> entries.

-bpred:21ev <llsize> <12size> <hist_size> <got>
specify the 2-level adaptive predictor.
<llsize> specifies the number of entries in
the first-level table, <12size> specifies the
number of entries in the second-level table,
<hist_size> specifies the history width, and
<xor> allows you to xor the history and the
address in the second level of the predictor.
This organization is depicted in Figure 6. In
Table 2 we show how these parameters cor-
respond to modern prediction schemes. The
default settings for the four parameters are 1,
1024, 8, and 0, respectively.

-bpred:comb <size>

set the recta-table size of the combined pre-
dictor to be <size> entries. The default is
1024.

-bpred:ras <size>
set the return stack size to <size> (0 entries
means to return stack). The default is 8.

21

branch r-
address

~ a t t c r n 2 - b i t
m t o r y p r e d i c t o r s

branch
prediction

hist_size

Figure 6. 2-level adaptive predictor structure

p r e d i c t o r l l _ s i z e h i s t _ s i z e 12_size x o r

G A g 1 W 2 w 0

G A p 1 W >2 w 0

PAg N W 2 w 0

PAp N W 2N+W 0

gshare I W 2w I

Table 2: Branch predictor)arameters

entries.
-bprcxi:bth <sets> <assoc>

configure the BTB to have <sets> sets and an
associativity of <assoc.>. The defaults are
512 sets and an associativity of 4.

-bpred:spec_update <stage>
allow speculative updates of the branch pre-
dictor in the decode or writeback stages
(<stage> = [IDIWB]). The default is non-
speculative updates in the commit stage.

VisuulizaUon

-pestat <sLat>

record statistic <star> by text address;
described in Section 4.3.

-ptrace <file,> <range,>

pipeline tracing, described in Section 5.

4 . 5 S i m u l a t o r c o d e f i l e d e s c r i p t i o n s

The following list describes the functionality of the C code
flies in the s i m p l e s i m - 2 . 0 / directory, which are used by all
of the simulators.

• b i t = m a p , h: Contains support macros for performing bit-
map manipulation.

• b p r e d . [c , h] : Handles the creation, functionality, and
updates of the branch predictors, b p r e d _ c r e a t e () ,
bpred_lookup (), and bpred_update () are the key
interface functions.

• cache. [c,h]: Contains general functions to support
multiple cache types (e.g., TLBs, instruction and data
caches). Uses a linked-list for tag comparisons in caches of
low associativity (less than or equal to four), and a hash

table for tag comparisons in higher-associativity caches.
The important interfaces are c a c h e _ c r e a t e (),
cache_access (), cache_probe (),
cache_flush (), and cache_f lush_addr ().

• dlite _ [c, h] : Contains the code for Diite!, the source-
level target program debugger.

• e n d i a n . [c , h] : Defines a few simple functions to deter-
mine byte- and word-order on the host and target platforms.

• e v a l . [c , h] : Contains code to evaluate expressions, used
in DLite!.

• e v e n t q . [c , h] : Defines functions and macros to handle
ordered event queues (used for ordering writebacks). The
important interface functions are e v e n t q . . . q u e u e () and
eventq_service_events ().

• loader. [c, h]: Loads the target program into memory,
sets up the segment sizes and addresses, sets up the initial
call stack, and obtains the target program entry point. The
interface is id_load__prog ().

• m a i n . c: Performs all initialization and launches the main
simulator function. The key functions are
sim_options (), sim_config (), sim_main (),
andsim stats ().

• m e m o r y . [c , h] : Contains functions for reading from,
writing m, initializing, and dumping the contents of the tar-
get main memory. Memory is implemented as a large flat
space, each portion of which is allocated on demand.
mem._acces s () is the important interface function.

• m i s c . [c , h] : Contains numerous useful support func-
tions, such as fatal (), panic (), warn (), info (),
debug (), getcore (), and elapsed_time ().

• options. [c,h]: Contains the $impleScalar options
package code, used to process command-l ine arguments
and/or option specifications from config files. Options are
registered with an option database (see the functions called
o p t = _ r e g _ * ()) . o p t = p r i n l - _ h e l p O generates a help
listing, and o p t - . . . p r ± n t _ o p l - i o n s () prints the current
options' state.

• p t = r a c e . [c , h] : Contains code to collect and produce
pipeline traces from s im-outorder .

• r a n g e . [c , h] : Holds code that interprets program range
commands used in DLiteI.

• r e g s . [c , h] : Contains functions to initialize the register
files and dump their contents.

• r e s o u r c e . [c , h] : Contains code to manage functional
unit resources, divided up into classes. The three defined
functions create the resource pools and busy tables
(r e s _ c r e a t = e _ . p o o 1 ()), return a resource from the spec-
ified pool if available (r e g _ g e t ()), and dump the con-
tents of a pool (res_dump ()).

• s i r e . h : Contains a few extern variable declarations and
function prototypes.

• s t a t s . [c , h] : Contains routines to handle statistics mea-
suring target program behavior. As with the options pack-
age, counters are "registered" by type with an internal
database. The s t a t _ r e ~ t _ * () routines register counters
of various types, and s t = a t _ r e g f o r m u l a () allows you

22

to register expressions constructed of other statistics.
s~at_print_sta~s() prints all registered statistics.
The statistics package also has facilities to measure distribu-
tions; s e a t _ r e g _ d i s t () creates an array distribution,
stat_reg_sdise () creates a sparse array distribution,
and s t a r - _ a d d _ s a m p l e () updates a distribution.

• s s . [c , h] : Defines macros to expedite the processing of
instructions, numerous constants needed across simulators,
and a function to print out individual instructions in a read-
able format.

• s s. clef: Holds a list of macro calls (the macros are defined
in the simulators and s s . h and a s . c) , each of which
defines an instruction. The macro calls accept as arguments
the opcode, name of the instruction, sources, destinations,
actions to execute, and other information. This file serves as
the definition of the instruction set.

• s y m b o l . [c , h] : Holds routines to handle program sym-
bol and line information (used in DLite!).

• syscall. [c, h] : Contains code that acts as the interface
between the SimpleScalar system calls (which are POSIX-

compliant) and the system calls on the host machine.

• sysprobe, c: Determines byte and word order on the host

platform, and generates appropriate compiler flags.

• vers £on. h: Defines the version number and release date
of the distribution.

5 Utilities

In this section we describe the utilities that accompany the
SimpleScalar tool set; pipeline tracing and a source-level debug-
ger.

5 .1 O u t - o f - o r d e r p i p e l i n e t r a c i n g

The tool set provides the ability to extract and view traces of
the out-of-order pipeline. Using the "-ptrace" option, a detailed
history of all instructions executed in a range may be saved to a
file. The information saved includes instruction fetch, retirement,
and stage transitions. The syntax of this command is as follows:

-ptrace <file> <start>:<end>

<file> is the file to which the trace will be
saved. <start> and <end> are the instruction
numbers at which the trace will be started
and stopped. If they are leR blank, the trace
will start at the beginning and/or stop at the
end of the program, respectively.

For example:

-ptrace FOO.tre 100:500

trace from instructions 100 to 500, store the
trace in file FOO.src.

-ptxace FOO.trc :10000

trace from program beginning to instruction
10000.

-ptrace FOO.trc :
trace the entire program execution.

The traces may be viewed with the pipeview.pl Perl script,
which is provided in the simplesim-2.0 directory. (You will have
to update the first line o f p i p e v i e w , p l to have the correct path

to your local Perl binary, and you must have P e r installed on
your system).

p.4.pev J.ew. p l <pt:rac8_£'l].e >

We depict sample output from the pipetracer in Figure 7.

5 . 2 T h e DLi teZ d e b u g g e r

Release 2.0 of Simple, Scalar includes a lightweight symbolic
debugger called DLite!, which runs with all simulators except for
sim-fast. DLitel allows you to step through the benchmark target
code, not the simulator code. The debugger can be incorporated
into a simulator by adding only four function calls (which have
already been added to all simulators in the distribution). The
needed four function prototypes arc in d l i t e . h.

To use the debugger in a simulation, add the "-i" option
(which stands for interactive) to the simulator command line.
Below we list the set of commands that DLite! accepts.

Gett ing help and gett ing out:

help [string] print command reference.

version print DLite! version information.

quit exit simulator.
terminate generate statistics and exit simulator.

R u n n i n g and setting breakpoints:

step execute next instruction and break.

cont [addr] continue execution (optionally continuing
starting at <addr>).

break <addr> set breakpoint at <addr>, returns <id> of
breakpoint.

dbreak <addr> [r,w,x]

set data breakpoint at <addr> for (0ead,
(w)rite, and/or e(x)ecute, returns <id> of
breakpoint.

rbreak <range> [r,w,x]

set breakpoint at <range> for (r)ead, (w)rite,
and/or e(x)ecute, returns <id> of breakpoint.

breaks list active code and data breakpoints.
delete </d> delete breakpoint <id>.

clear clear all breakpeints (code and data).

Pr int ing information:

print [modifiers] <expr>

print the value of <expr> using optional
modifiers.

display [modifiers] <expr>
display the value of <expr> using optional
modifiers.

option <string> print the value of option <string>.
options print the values of all options.
stat <string> print the value of a statistical variable.
stats print the values of all statistical variables.

whatis <expr> pnnt the type of<expr>.
regs print all register contents.

iregs print all instruction register contents.

fpregs pnnt all floating point register contents.
mstate [string] print machine-specific state.
dump <addr> [count]

- - 2 3 - -

new cycle
indicator

new instruction
definitions

current pipeline
state

r-

@ 610

gf = '0x0040d0g8: addiu
gg = '0x0040d0a0: beq

r2, r4, -1'
r3, rS, Ox30'

[IF] [DA] [EX]
gf gb fy
gg gc fz

gd~ ga+

pipeline event:
(misprediction
detected), see output
header for event defs

fq
is
ft
fu

t t t
inst. being inst. being inst. inst. writing
fetched, or in decoded, or executing results into
fetch queue awaiting issue RUU, or

awaiting retire

t
inst. retiring
results to
register file

Figure 7. Example of sim-outorder pipetrace

dump memory at <addr> (optionally for
<count> words).

dis <oddr> [count]
disassemble instructions at <addr> (option-
ally for <count> instructions).

symbols print the value o f all program symbols.
tsymbois print the value of all program text symbols.
dsymbols print the value o f all program data symbols.
symbol <string>

print the value of symbol <string>.

Lega l a r g u m e n t s :
Arguments <addr>, <cnt>, <expr>, and <id> arc any legal

expression:
<expr> <---- <factor> +I- <expr>

<factor-> ¢--- <term> *l/ <factor>
<term> <-- (<expr>)

I - <term> I <const> I <symbol> I <file:loc>
<-- <literal> I <function name> I <:register>
<-- [0-9]+ I Ox[0-9,a-fJ+ 1 0[0-7]+
<- $r[0-31] I $f[0-31] I Spc I $fcc I Shi I $1o

<symbol>
<literaL>
<register>

Lega l r anges :

<range>

<address>
<instruction>
<cycle>

~-- <address> I <insU'uction> I <cycle>
<--- @<function name>: [+<literal>}
(--- [<literal> }: (<literal> }
(--- # [<li teral> }: (<literal> }

Omitting optional arguments to the left o f the colon will default
to the smallest value permitted in that range. Omitt ing an
optional argument at the right o f the colon will defau]t to the
largest value permitted in that range.

Lega l c o m m a n d modi f ie rs :

b print a byte
h print a half (short)
w print a word (default)
t print in decimal format (default)
o print in octal format

x print in hex format
1 print in binary format

f print float
d print double
c print character
$ print string

E x a m p l e s o f legal c o m m a n d s :

b r e a k t a a i n + a

break 0 x 4 0 0 1 4 8

dbreak otdin w

d b : e a . k aye_count WE

rbreak @main:+279

rbreak 2 0 0 0 : 3 5 0 0

rbreak # : 1 0 0 c~q~le

rbreak :

0 t o , - .yc=la 1 0 0

e n t i r e e x e e u t 4 o n

6 Summary
The SimpleScalar tool set was written by Todd Austin over

about one and a half years, between 1994 and 1996. He continues
to add improvements and updates. The ancestors of the tool set
date back to the mid to late 1980s, to tools written by Manoj
Franklin. At the time the tools were developed, both individuals
were research assistants at the University of Wisconsin-Madison
Computer Sciences Department, supervised by Professor Guri
Sohi. Scott Breach provided valuable assistance with the imple-
mentation of the proxy system calls. The first release was assem-
bled, debugged, and documented by Doug Burger, also a
research assistant at Wisconsin, who is the maintainer of the sec-
ond release as well. Kevin Skadron, currently at Princeton,
implemented many of the more recent branch prediction mecha-
nisms.

Many exciting extensions to SimpleScalar are both underway
and planned. Efforts have Ix:gun to extend the processor simula-
tors to simulate multithreaded processors and multiprocessors. A
Linux pert to SimpleScalar (enabling simulation o f the OS on a
kernel with publicly available sources) is planned, using device-
level emulation and a user-level file system. Other plans include

24

extending the tool set to simulate ISAs other than SimpleScalar
and MIPS (Alpha and SPARC ISA support will be the first addi-
tions).

As they stand now, these tools provide researchers with a simula-
tion infrastructure that is fast, flexible, and efficient. Changes in
both the target hardware and software may be made with mini-
mal effort. We hope that you find these tools useful, and encour-
age you to contact us with ways that we can improve the release,
documentation, and the tools themselves.

References

[1] L .A . Belady. A Study of Replacement Algorithms for a
Virtual-Storage Computer. IBM Systems Journal, 5(2):78--
101, 1966.

[2] Doug Burger and Todd M. Austin. The SimpleScalar Tool
Set Version 2.0. Technical Report 1342, Computer Sci-
ences Department, University of Wisconsin, Madison, WI,
1997.

[3] L.P. Horwitz, R. M. Karp, R. E. Miller, and A. Winograd.
Index Register Allocation. Journal of the ACM, 13(1):43-
61, January 1966.

[4] Charles Price. MIPS IV Instruction Set, revision 3.1. MIPS
Technologies, Inc., Mountain View, CA, January 1995.

[5] Gurindar S. Sohi. Instruction Issue Logic for High-Perfor-
mance, Interruptible, Multiple Functional Unit, Pipelined
Computers. IEEE Transactions on Computers, 39(3):349-
359, March 1990.

[6] Rahin A. Sugumar and SantoshG. Abraham. Efficient
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization. In Proceedings of
the 1993 ACM Sigmetrics Conference on Measurements
and Modeling of Computer Systems, pages 24-35, May
1993.

- - 2 5 m

